X-Ray Structural Analysis of the Irradiated Basalt Composite Microstructure

Vladimir Oniskiv, Valerii Stolbov, Elvira Ibragimova

Perm National Research Polytechnic University, Russia; Institute of Nuclear Physics Academy of Sciences, Tashkent, Republic of Uzbekistan

Cite: Oniskiv V., Stolbov V., Ibragimova E. X-Ray Structural Analysis of the Irradiated Basalt Composite. Digital Science. DSIC 2023, 5-16. 2023. https://doi.org/10.33847/978-5-6048575-1-9_1

Abstract. A study of the microstructure and elemental composition of the components of a composite material based on basalt after its gamma irradiation for the purpose of mechanical hardening was carried out. For this, a scanning electron microscope and a built-in energy-dispersive system were used. Local changes in morphology (nucleation of bubbles and cracks), as well as the elemental composition of the epoxy binder and filler (basalt fibers) were analyzed. Irradiation was carried out in the dose range: 5-15 Mrad. It has been shown that at irradiation doses up to 10 Mrad, new intermolecular bonds are formed and the material is strengthened. At high doses of irradiation, bond destruction and the formation of a gas phase are observed, which leads to weakening of the composite.

Keywords: Basalt composites, microstructure modification, gamma irradiation, SEM, local elemental composition.


This study was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation within the framework of the Perm Scientific and Educational Center “Rational Subsoil Use” activity program and the project of the International Research Group (С-26/591).

1. Makarevich, Yu.L., Oniskiv, V.D., Stolbov, V.Yu. and Gitman, I. (2022) Effect of Gamma Irradiation on Strength Properties of Basalt Composites. Mechanics of Composite Materials,vol. 58. no.1. pp. 43-55. DOI:10.22364/mkm.58.1.0x.
2.Oniskiv, V.D., Stolbov, V.Yu. and Makarevich, Yu.L. (2023) Investigation of mechanical properties and structure of irradiated basalt  composites using IR spectrometry. High Energy Chemistry, vol.57. no.5. pp. 410-417. DOI:10.1134/S0018143923050090.
3. Ibragimova, E.M., Salakhitdinov, A.N., Salakhitdinova, M.K., Yusupov, A.A. (2018) Effect of Gamma Radiation on Absorption of Light in Potassium-Aluminoborate Glasses with Additions of Iron Oxide. Journal of Applied Spectroscopy, vol.85. Is. 2. pp. 255-260.DOI: 10.1007/s10812-018-0641-5.
4. Ilyushin, A.S., Oreshko, A.P. Introduction to Diffractive Structural Analysis / Moscow State University (2008).
5. Osnos, M.S., Osnos, S.P. (2019) Basalt continuous fibers – the basis for the creation of a new industrial production and the widespread use of reinforcing and composite materials. Composite World, No. 1. pp. 58-65.
6. Osnos, S.P., Rozhkov, A.I., Fedotov, A.A. (2022) Basalt Continuous Fibers: Characteristics and Benefits. Raw materials, technologies and equipment. Creation of factories and materials. Composite World, No. 2. pp.18-27. 
7. Dhand, V., Mittal, G., Rhee, K.Y., Park, S.J., Hui, D. (2015) A short review on basalt fiber reinforced polymer composites. Compos Part B Eng, №73. pp. 166-180.
8. Szabo, P.J., Reti, T., Czigany, T. (2008) Investigation of Bazalt Fiber Reinforced Polyamide Composites. Materials science Forum, Vol.589. pp.7-12.  
9. Dorigato, A., Pegoretti, A. (2012) Fatigue resistance of basalt fibers-reinforced laminates. J. Compos Mater., Vol. 46. Is.15. pp. 1773-1785.
10. Liu H., Yu Y., Liu Y., Zhang M., Li L., Ma, L., Sun Y., Wang W. (2022) A review on basalt fiber composites and their applications in clean energy sector and power grids. Polymers, Vol.14. pp. 2376. doi.org/10.3390/polym14122376
11. Liu, Y., Zhang, M., Liu, H., Tian, L., Liu, J., Fu, C., Fu, X. (2022) Properties of basalt fiber core rods and their application in composite cross arms of a power distribution network. Polymers, Vol. 14. pp. 2443. doi.org/10.3390/polym14122443Y
12. Yan, L., Chu, F., Tuo, W., Zhao, X., Wang, Y., Zhang, P., Gao, Y. (2021) Review of research on basalt fibers and basalt fiber-reinforced composites in China (I): Physicochemical and mechanical properties. Polymers and Polymer Composites, Vol.29. Is.9. pp. 1612–1624. DOI: 10.1177/0967391120977396
13. Fitzgerald, A., Pround, W., Kandemir, A., Murphy, R.J., Jesson, D.A., Trask, R.S., Hamerton, I., Longana, M.L. (2021) A life cycle engineering perspective on biocomposites  as a solution for a sustainable recovery. Sustainability, Vol.13. Is.3. pp.1160. doi.ogr/10.3390/su13031160
14. Chuvashov, Yu., Jashchenko, O., Diduka, I., Gulik, V. (2020) The investigation of fiber surface condition from basalt-like rocks for enhanced industrial applications. Journal of Natural Fibers, Vol.19. No. 8. doi.org/10.1080/15440478.2020.1838987
15. Baptista, R., Marat-Mendes, R., Fortes, C., Gil, R., Queiroga, B. (2015) Comparation of mechanical behavior of basalt and carbon fiber reinforced composites applied to a prosthesis device. 6th Congresso Nacional De Biomecanica. Monte Real, Leiria, Portugal, 6-7 de fevereiro., pp.1-6.
16. Karavaeva, E.M., Rogozhnikov, G.I., Nyashin, Y.I., Nikitin, V.N. (2015) Biomechanical modelling of application of splinting fiber on the basis of basalt in the treatment of patients with parodontal diseases. Russian Journal of Biomechanics, Vol.19. Is.1. pp. 106-115. DOI: 10.15593/RZhBiomeh/2015.1.09
17. Ohlopkova, A.A.; Vasilyev, S.V.; Gogoleva, O.V. (2014Study of the effect of basalt fiber on the physical, mechanical and tribotechnical characteristics of composites based on polytetrafluoroethylene. Arctic. 21century. Technical science, no.1(2), pp.11-19. 
18. Starovoytova, I.A.; Zykova, E.S.; Syleimanov, A.M.; ect. (2016) Study of the physical and mechanical characteristics of nanomodified basalt roving and composite material based on it. Izvestiya KSUAE, no. 3, pp. 217-222.
19. Efanova, V.V. (2000IR Spectroscopic Study of the Interaction of a Polymer Matrix with the Surface of an Activated Basalt Scale. Ukrainian Chemical Journal, no. 66 (3), pp. 59-62.
20. Arzamastsev, S.V.; Artemenko, S.E.; Pavlov, V.V. (2011Structure and properties of basalt plastic based on polyamide-6. Plastics, no. 5,pp.60-64.
21. Shcherbakov, A., Mostovoy, A., Bekeslev, A., Burmistrov, I., Arzamastsev. S., Lopukhova, M. (2022) Effect of microwave irradiation at different stages of manufacturing usaturated polyester nanocomposite. Polymers, Vol.14. Is.21. pp.4594. DOI:10.3390/polym 14214594.
22. Bekeslev, A., Mostovoy, A., Tastanova, L., Kadykova, Y., Kalganova, S., Lopukhova, M. (2020) Reinforcement of Epoxy Composites with Application of Finely-ground Ochre and Electrophysical Method of the Composition Modification. Polymers, Vol.12. Is.7. pp.1437. DOI:10.3390/polym 12071437.
23. El-Hadi, Z.A. (2002) Gamma Ray Interaction with Some High-Lead Glasses Containing Chromium Ions. J. of Solid State Chemistry, Vol.163. Is.2. pp.351-363. DOI: 10.1006/jssc.2001.9290
24. Artemenko, S.E., Kadykov, Yu.A. (2009) Modification of basalt plastics by hybridization of basalt filaments with inorganic filler. Plastics, no.1. pp. 11-13.
25. Kudinov, V.V., Korneeva, N.V., Krylov, I.K. ect. (2008) Hybrid polymer composite materials. Physics and chemistry of material processing, no.2. pp. 32-37.
26. Makarevich, Yu. L., Oniskiv, V.D., Stolbov, V.Yu. (2022) Effect of modification on strength properties functional composites // Lecture Notes in Networks and Systems, Vol.315. pp.464-470. DOI: 10.1007/978-3-030-93677-8_14
27. Skroznikov, S.V., Zelentsova,  N.S., Lyamkina, D.E. ect. (2010) Features of the structural and mechanical properties of radiation-crosslinked polyethylene for cable insulation. Advances in chemistry and chemical technology, vol. 24. no3. pp. 77-81.
28. Al-Harthi, M.A. (2014) Influence of applying microwave radiation on the LDPE/MWCNTs nanocomposite. Polymer Compositesvol.35.is.10. pp.2036-2042. DOI:10.1002/pc. 22864.
29. Mussaeva, M. A., Ibragimova, E. M.  (2019) Electron microscopy and elemental composition of the near-surface layer of electron-irradiated LiF crystals. Tech. Phys. Lett., vol 45. Is.2. pp. 155–158. DOI: 10.21883/PJTF.2019.04.47335.17583
30. Oniskiv, V., Stolbov, V.Yu., Oniskiv, L. (2020) Optimization of the processing of functional materials using gamma irradiation. In book: Advances in Intelligent Systems and Computing, vol. 1114 AISC. pp. 489-498. 
31. Wong, S.S.M. Introductory Nuclear Physics, 2nd Ed / Wiley-VCH Verlag Gmbh (2004).

Published online 05.11.2023