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PREFACE 
 

Throughout science, digitization is occurring in shorter waves than 

ever before. Digital transformation can reduce operational costs and 

inefficiencies, and puts the technology of scientific studies/research at 

the center of scientific strategy. Highly complex interactions between 

many technologies, activities, and people make up modern scientific 

work. 

This book reflects a science-based vision of using composite 

materials and high-tech devices in Engineering, Biomechanics, and 

Medicine. 

The results of these studies would lead to the implementation of a 

common integrated digital technology that could hold information about 

research results and their engineering, biomechanical, and medical 

relations, strengthen data exchange and connections among people, 

devices and applications in an expanded scenario that includes composite 

materials, high-tech equipment and big data. 

Scholars, professionals and experts whose work is related to the 

digital transformation of modern socio-economic and engineering 

systems in the digital age are the target audience of this book. 

 

Tatiana Antipova 
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Аbstract. A study of the microstructure and elemental composition 
of the components of a composite material based on basalt after its 
gamma irradiation for the purpose of mechanical hardening was 
carried out. For this, a scanning electron microscope and a built-in 
energy-dispersive system were used. Local changes in morphology 
(nucleation of bubbles and cracks), as well as the elemental 
composition of the epoxy binder and filler (basalt fibers) were 
analyzed. Irradiation was carried out in the dose range: 5-15 Mrad. 
It has been shown that at irradiation doses up to 10 Mrad, new 
intermolecular bonds are formed and the material is strengthened. 
At high doses of irradiation, bond destruction and the formation of 
a gas phase are observed, which leads to weakening of the 
composite. 

 
  Keywords: Basalt composites, microstructure modification, gamma 

irradiation, SEM, local elemental composition. 
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Abstract. To produce cross-linked polyethylene using the radiation 
method, a lengthy procedure for irradiating the polyethylene is 
required. Reducing the time spent on irradiation will increase the 
yield of finished products per unit time and increase production 
efficiency. It has been experimentally confirmed that irradiation of 
polyethylene in the presence of hydrocarbon gases (for example, in 
the presence of acetylene) makes it possible to achieve the required 
degree of intermolecular cross-linking in less time. The article 
presents a modified algorithm for the production of cross-linked 
polyethylene, and identifies parameters whose changes can 
influence the speed of the production process. The problem of 
managing the production process is formulated in order to minimize 
the time spent on the production of cross-linked polyethylene. A 
description of mathematical models is given that make it possible 
to develop a control system for the production process of 
polyethylene modification using radiation exposure. 
 
Keywords: cross-linked polyethylene, radiation technology, gas 
diffusion, production management. 
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Аbstract. The results of surgical treatment of 8-16-year-old 
children with extensive bone defects after pathological 
tissue resection with the use of high-porosity cellular carbon 
in isolation (9 patients) and in combination with autografts 
(3 patients) are presented. Children with lesions of long 
bone segments – the tibia, humerus, and femur (10 
patients) predominated. The Musculo Skeletal Tumor 
Society Score was used as the basis for outcome 
assessment, and clinical and radiological data were 
assessed. The results in 100% of treated patients were 
rated as good in terms of 7 to 12 years after surgery. There 
were no complications in the operated patients. The efficacy 
of treatment according to the ISOLS system was + 56.8% 
after treatment in the group after carbon plastic surgery, 
the postoperative score became higher by more than 1.5 
times, there were no recurrences of the defects, full 
integration of the implanted materials with good clinical and 
radiological results were registered. High-porous cellular 
carbon is suitable for effective plasty of bone defects in 
children and when properly applied leads to good results 
and no complications. 

 
Keywords: bone replacement materials, high-porous cellular 
carbon, tumor and tumor-like diseases. 
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Abstract. High-tech medical equipment for telemedicine, nuclear 
medicine, etc. is needed for patients’ treatment in modern medical 
institutions. In order to provide medical institutions with such 
equipment, it is necessary to determine the adequacy of the 
medical equipment already available in hospitals and/or the need 
for the purchase of more modern and efficient medical equipment.  
We should also remember that the medical institutions are 
responsible for providing medical services that meet the standards 
of economy and efficiency, free of fraud, misuse, and so on. The 
concept of value-based healthcare institutions demonstrates 
improved quality of care through rigorous quality assurance 
measures. But in some cases, the management of these institutions 
falls short of their remarkable potential because of the lack of 
information, the lack of incentives, and the fragmented nature of 
the organization between management and practitioners. This 
chapter provides scientific view for determining appropriateness 
and necessity of high-tech medical equipment by integrating 
service data, and a logical scheme for evaluating High-tech medical 
equipment alternatives. 
 
Keywords: High-tech medical equipment, cost reduction, health 
research.  
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