Sapna Jain, M Afshar Alam
Jamia Hamdard, Delhi, India
Cite: Jain S., Alam M.A. Applications of Human-Computer Interaction in Health Psychology. J. Digit. Art Humanit., 3(1), 36-57. https://doi.org/10.33847/2712-8148.3.1_5
Abstract. The Human-Computer Interaction (HCI) manages the plan, assessment and utilization of data and correspondence advancements. From man-made consciousness to social robots and robots for sexual problems, HCI covers a wide scope of uses. Abilities an interdisciplinary methodology, in light of the joint effort between intellectual mechanical technology and kid brain research, for oneself supporting plan of intellectual and conduct abilities in engineered intellectual specialists, including robots, that is animated by thoughts and formative systems found in kids. Cyberpsychology examines every one of the ones mental peculiarities which are identified with age and pursuits to examinations the strategies of substitute welcomed on through the exchange among fellow and the fresh out of the box new media. This paper discusses how artificial intelligence and HCI applications are handling psychological issues that affect health in an efficient manner. The paper explains how AI and human consciousness are interlinked and different factors play a very important role to provide the support for behavioral issues and diseases. The contribution of Artificial Intelligence in transforming HCI is discussed through case studies, applications and systems in the paper.
Keywords: Human-Computer Interaction, artificial intelligence, cyberpsychology, diseases.
Acknowledgment
The authors acknowledge the DST organization of the government of India for providing the Fund for Improvement of S&T Infrastructure (FIST) for the research lab in the Department of Science and Technology, Jamia Hamdard, to conduct this research work.
References
1. Sitepu, Juli Maini. “Artificial Intelligence Related to Psychology.” In ICGE Conference Proceedings, vol. 6, pp. 802-807. 2018.
2. Artificial Intelligence & applications Tahan M. (In Press). Artificial Intelligence applications and psychology. Avicenna Journal of Neuropsychophysiology. Doi: http://dx.doi.org/10.32598/ajnpp.4.3.210
3. Shukla S, Jaiswal V. Applicability of artificial intelligence in different fields of life. International Journal of Scientific Engineering and Research (IJSER). 2013; 1(1):28-35.
4. Mozera MC, Wiseheartd M, Novikoffc TP. Artificial intelligence to support human instruction. Proceedings of the National Academy of Sciences of the United States of America. 2019; DOI:10.1073/pnas.1900370116
5. Wang Z, Xie L, Lu T. Research progress of artificial psychology and artificial emotion in China. CAAI Transactions on Intelligence Technology. 2016; 1(4):355-65, DOI: 10.1016/j.trit.2016.11.003
6. Tran BX, Vu GT, Ha GH, Vuong QH, Ho MT, Vuong TT, et al. Global evolution of research in artificial intelligence in health and medicine: a bibliometric study. Journal of Clinical Medicine. 2019; 8(3), DOI:10.3390/jcm8030360
7. Lee Y, Ragguett RM, Mansur RB, Boutilier JJ, Rosenblat JD, Trevizol A, et al. Applications of machine learning algorithms to predict therapeutic outcomes in depression: A meta-analysis and systematic review. Journal of Affective Disorders. 2018; 241:519-32. DOI: 10.1016/j.jad.2018.08.073
8. Gelernter H, Hansen JR, Loveland DW. Empirical explorations of the geometry-proving machine. In: Feigenbaum E, Feldman J (editors). Computers and thought. New York: McGraw-Hill; 1963.
9. Artificial Intelligence applications and psychology. Available from: https://www.researchgate.net/publication/335016214_Artificial_Intelligence_applications_and_psychology
10. Beilby, J. (2018). Workforce innovation: Embracing emerging technologies. Australian Journal of General Practice, 47(8),522-524.
12. Riva, G. (2008). Psychologies dei nuovi media. Bologna: Il Mulino
13. Connolly, I., Palmer, M., Barton, H., & Kirwan, G. (2016). An introduction to Cyberpsychology. Cyberpsychology, behaviour and social networking, 19(4), 294-295.
14. Julie R. Ancis, The Age of Cyberpsychology: An Overview, Technology, Mind, and Behaviour, https://doi.org/10.1037/tmb0000009
15. Atrill-Smith, A., Fullwood, C., Keep, M., & Kuss, D. J. (Eds.). (2019). The Oxford handbook of cyberpsychology. Oxford University Press. https://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780198812746.001.0001/oxfordhb-9780198812746
16. Libin, A. V., & Libin, E. V. (2004). Person-robot interactions from the robopsychologists’ point of view: The robotic psychology and robotherapy approach. Proceedings of the IEEE, 92(11), 1789–1803. https://doi.org/10.1109/JPROC.2004.835366
17. David, D., Matu, S.-A., & David, O. A. (2014). Robot-based psychotherapy:Concepts development, state of the art, and new directions. InternationalJournal of Cognitive Therapy, 7(2), 192–210. https://doi.org/10.1521/ijct.2014.7.2.192
18. Esteban, P. G., Baxter, P., Belpaeme, T., Billing, E., Cai, H., Cao, H.-L., Coeckelbergh, M., Costescu, C., David, D., De Beir, A., Fang, Y., Ju, Z.,Kennedy, J., Liu, H., Mazel, A., Pandey, A., Richardson, K., Senft, E.,Thill, S., Ziemke, T. (2017). How to build a supervised autonomoussystem for robot-enhanced therapy for children with autism spectrum disorder. Paladyn: Journal of Behavioral Robotics, 8(1), 18–38. https://doi.org/10.1515/pjbr-2017-0002
19. Goodrich, M. A., Colton, M., Brinton, B., Fujiki, M., Atherton, J. A.,Robinson, L., Ricks, D., Maxfield, M. H., & Acerson, A. (2012).Incorporating a robot into an autism therapy team. IEEE Intelligent Systems, 27(2), 52–59. https://doi.org/10.1109/MIS.2012.40
20. Ramírez-Duque, A. A., Bastos, T., Munera, M., Cifuentes, C. A., & Frizera Neto, A. (2020). Robot-Assisted Intervention for children with specialneeds: A comparative assessment for autism screening. Robotics and Autonomous Systems, 127, Article 103484. https://doi.org/10.1016/j.robot.2020.103484
21. Thill, S., Pop, C. A., Belpaeme, T., Ziemke, T., & Vanderborght, B. (2012). Robot-assisted therapy for autism spectrum disorders with (Partially)autonomous control: Challenges and outlook. Paladyn: Journal of Behavioral Robotics, 3(4), 209–217. https://doi.org/10.2478/s13230-013-0107-7
22. Diehl, J. J., Schmitt, L. M., Villano, M.,&Crowell, C. R. (2012). The clinicaluse of robots for individuals with autism spectrum disorders: A critical review. Research in Autism Spectrum Disorders, 6(1), 249–262. https://doi.org/10.1016/j.rasd.2011.05.006
23. Bemelmans, R., Gelderblom, G. J., Jonker, P., & de Witte, L. (2012). Socially assistive robots in elderly care: A systematic review intoeffects and effectiveness. Journal of the American Medical Directors Association, 13(2), 114–120.e1. https://doi.org/10.1016/j.jamda.2010.10.002
24. Robinson, H., Macdonald, B., Kerse, N., & Broadbent, E. (2013). Thepsychosocial effects of a companion robot: A randomized controlled trial.Journal of the American Medical Directors Association, 14(9), 661–667.https://doi.org/10.1016/j.jamda.2013.02.007
25. Wada, K., Shibata, T., Saito, T., & Tanie, K. (2004). Effects of robot-assistedactivity for elderly people and nurses at day service center. Proceedings of the IEEE, 92(11), 1780–1788. https://doi.org/10.1109/JPROC.2004.835378
26. Broekens, J., Heerink, M., & Rosendal, H. (2009). Assistive social robots in elderly care: A review. Gerontechnology (Valkenswaard), 8(2), 94–103.https://doi.org/10.4017/gt.2009.08.02.002.00
27. Costescu, C. A., Vanderborght, B., & David, D. O. (2014). The effects of robot-enhanced psychotherapy: A meta-analysis. Review of General Psychology, 18(2), 127–136. https://doi.org/10.1037/gpr0000007
28. Ricks, D. J., & Colton, M. B. (2010). Trends and considerations in robot assisted autism therapy. IEEE International Conference on Robotics and Automation, pp. 4354–4359. https://doi.org/10.1109/ROBOT.2010.5509327
28. Wellman, B. (2001). Computer networks as social networks. Science, 293, 2031–2034. https://doi.org/10.1126/science.1065547
29. Liu, C. Y., & Yu, C. P. (2013). Can Facebook use induce well-being? Cyberpsychology Behavior, and Social Networking, 16(9), 674–678. https://doi.org/10.1089/cyber.2012.0301
30. Nabi, R. L., Prestin, A., & So, J. (2013). Facebook friends with (health) benefits? Exploring social network site use and perceptions of social support, stress, and well-being. Cyberpsychology, Behavior, and Social Networking, 16(10), 721–727. https://doi.org/10.1089/cyber.2012.0521
31. Cole, D. A., et al. (2019). Are aspects of Twitter use associated with reduced depressive symptoms? The moderating role of in-person social support. Cyberpsychology, Behavior, and Social Networking, 22(11), 692–699. https://doi.org/10.1089/cyber.2019.0035
32. Karsay, K., Schmuck, D., Matthes, J., & Stevic, A. (2019). Longitudinal effects of excessive smartphone use on stress and loneliness: The moderating role of self-disclosure. Cyberpsychology, Behavior, and Social Networking, 22(11), 706–713. https://doi.org/10.1089/cyber.2019.0255
33. Aarseth, E., et al (2017). Scholars’ open debate paper on the World Health Organization ICD-11 Gaming Disorder proposal. Journal of Behavioral Addictions, 6(3), 267– 270. https://doi.org/10.1556/2006.5.2016.088
34. Lam, L. T., Peng, Z. W., Mai, J. C., & Jing, J. (2009). Factors associated with Internet addiction among adolescents. Cyberpsychology & Behavior, 12(5), 551–555. https://doi.org/10.1089/cpb.2009.0036
35. Van Rooij, A. J., & Kardefelt-Winther, D. (2017). Lost in the chaos: Flawed literature should not generate new disorders. Journal of Behavioral Addictions, 6(2), 128–132. https://doi.org/10.1556/2006.6.2017.015
36. Himmelsbach J., et al. Do We Care About Diversity in Human Computer Interaction: A Comprehensive Content Analysis on Diversity Dimensions in Research, CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK, https://doi.org/10.1145/3290605.3300720
37. Liam Bannon. 2011. Reimagining HCI: toward a more human-centered perspective. interactions 18, 4 (2011), https://doi.org/10. 1145/1978822.1978833
38. Kari Kuutti. 2001. Hunting for the lost user: From sources of errors to active actors – and beyond. In Paper presented at Cultural Usability Seminar, Media Lab, University of Art and Design. Media Lab, University of Art and Design Helsinki
39. Haraway D. 1988. Situated Knowledges: The Science Question in Feminism and the Privilege of Partial Perspective. Feminist Studies 14, 3 (1988), 575–599. https://doi.org/10.2307/3178066
40. Yang Li and James A. Landay. 2008. Activity-based prototyping of ubicomp applications for long-lived, everyday human activities. In Proceeding of the twenty-sixth annual CHI conference on Human factors in computing systems -CHI ’08. ACM Press, New York, New York, USA, 1303. https://doi.org/10.1145/1357054.1357259
42. Sobel K. 2017. Equity & Inclusivity at IDC. Idc (2017), 761–767.
43. Juanita Brown and David Isaacs. 2006. The World Café: Shaping Our Futures Through Conversations That Matter. Berrett-Koehler Publishers Inc, San Francisco.
44. Gentry C, Ramzan Z, Stubblebine S (2005) Secure distributed human computation. In: ACM Conf. on Electronic Commerce, pp 328–332.
45. Mark Chignell, Peter A. Hancock, Harumi Takeshita, Human- Computer Interaction: The Psychology of Augmented Human Behavior, Human Pe~mnance and Ergonomics Academic Press.
46. Melissa R. H., et al. 2009. Human-computer interaction for development: The past, present, and future. Information Technologies & International Development 5, 4 (2009), pp–1.
47. Pamela Wisniewski, Geraldine Fitzpatrick, and Michael Muller. 2018. Intersectionality as a Lens to Promote Equity and Inclusivity within SIGCHI. In Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems, p. panel08. ACM, (2018), 1–6. https: //doi.org/10.1145/3170427.3186324
48. Jefrey J. Arnett. 2008. The Neglected 95%: Why American Psychology Needs to Become Less American. American Psychologist 63, 7 (2008), 602–614. https://doi.org/10.1037/0003-066X.63.7.602
49. Kelly Caine. 2016. Local Standards for Sample Size at CHI. Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems CHI ’16 (2016), 981–992. https://doi.org/10.1145/2858036.2858498
50. Jefrey J. Arnett. 2008. The Neglected 95%: Why American Psychology Needs to Become Less American. American Psychologist 63, 7 (2008), 602–614. https://doi.org/10.1037/0003-066X.63.7.602
51. Louise Barkhuus and Jennifer A Rode. 2007. From Mice to Men – 24 years of Evaluation in CHI. In Extended Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 1–16. https: //doi.org/10.1145/1240624.2180963
52. Li Y. and Landay J. A. 2008. Activity-based prototyping of ubicomp applications for long-lived, everyday human activities. In Proceeding of the twenty-sixth annual CHI conference on Human factors in computing systems -CHI ’08. ACM Press, New York, New York, USA, 1303. https://doi.org/10.1145/1357054.1357259.
53. Kelly Caine. 2016. Local Standards for Sample Size at CHI. Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems CHI ’16 (2016), 981–992. https://doi.org/10.1145/2858036.2858498
54. Schlesinger A., Edwards W. K., and Grinter R. E. 2017. Intersectional HCI: Engaging Identity through Gender, Race, and Class. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems -CHI ’17. ACM Press, New York, New York, USA, 5412–5427. https://doi.org/10.1145/3025453.3025766
55. Hooyman N. R. and Kiyak H. A. 2008. Social Gerontology: A Multidisciplinary Perspective. Pearson/Allyn & Bacon, Boston.
56. Choo H. Y. and Ferree M. M. 2010. Practicing Intersectionality in Sociological Research: A Critical Analysis of Inclusions, Interactions, and Institutions in the Study of Inequalities. Sociological Theory 28, 2 (2010), 129–149. https://doi.org/10.1111/j.1467-9558. 2010.01370.x
57. Brown J. and Isaacs D. 2006. The World Café: Shaping Our Futures Through Conversations That Matter. Berrett-Koehler Publishers Inc, San Francisco.
58. Derrick L. Cogburn. 2003. HCI in the so-called developing world: what’s in it for everyone. Interactions 10, 2 (2003), 80–87. https: //doi.org/10.1145/637848.637866
59. 2016. CHI ’16: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. ACM, New York, NY, USA.
60. 2011. CHI ’11: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, New York, NY, USA.
61. Sebe N. (2010) Human-centered Computing. In: Nakashima H., Aghajan H., Augusto J.C. (eds) Handbook of Ambient Intelligence and Smart Environments. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-93808-0_13
62. Shneiderman B (2002) Leonardo’s Laptop: Human Needs and the New Computing Technologies. MIT Press
63. Karat J, Karat C (2003) The evolution of user-centered focus in the human-computer interaction field. IBM Systems 42(2):532–541
64. Foley J (2008) HCC educational digital library. Tech. rep., http://HCC.cc.gatech.edu
65. HCC (2008) Human-Centered Computing: An interdisciplinary consortium at UC Berkeley . URL http://www.cs.berkeley.edu/jfc/HCC/
66. Gentry C, Ramzan Z, Stubblebine S (2005) Secure distributed human computation. In: ACM Conf. on Electronic Commerce, pp 328–332
67. von Ahn L, Dabbish L (2008) General techniques for designing games with a purpose. Communications of the ACM pp 58–67
68. Von Ahn L (2006) Games with a purpose. IEEE Computer pp 96–98
69. Yang Y (2021) The Talent Training Mode of International Service Design Using a Human–Computer Interaction Intelligent Service Robot From the Perspective of Cognitive Psychology. Front. Psychol. 12:600218.doi: 10.3389/fpsyg.2021.600218
70. Ritter, S., Barrett, D. G., Santoro, A., and Botvinick, M. M. (2017). Cognitive psychology for deep neural networks: a shape bias case study. arXiv preprint arXiv:170608606.
71. Kuo, H. C., Tseng, Y. C., and Yang, Y. T. C. (2019). Promoting college student’s learning motivation and creativity through a STEM interdisciplinary PBL human–computer interaction system design and development course. Think. Skills Creativity 31, 1–10. doi: 10.1016/j.tsc.2018.09.001
72. Khan, M. ,2016. Teaching human computer interaction at undergraduate level in Pakistan. Int. J. Comput. Sci. Inform. Secur. 14:278.
73. Urquiza-Fuentes, J., and Paredes-Velasco, M. (2017). Investigating the effect of realistic projects on students’ motivation, the case of human– computer interaction course. Comput. Hum. Behav. 72, 692–700.doi: 10.1016/j.chb.2016.07.020
74. Gary M. Olson and Judith S. Olson, HUMAN-COMPUTER INTERACTION:Psychological Aspects of the Human Use of Computing, Annu. Rev. Psychol. 2003. 54:491–516doi: 10.1146/annurev.psych.54.101601.145044
75. Card SK, Moran TP, Newell A. 1983. The Psychology of Human-Computer Interaction. Hillsdale, NJ: Erlbaum
76. Lerch FJ, Mantei M, Olson JR. 1989. Skilled financial planning: the cost of translating ideas into action. In Proc. CHI (Comput. Hum. Interact.) 1989, pp. 121–26. New York: ACMPress.
77. Lohse G. 1991. A cognitive model for the perception and understanding of graphs. In Proc. CHI (Comput. Hum. Interact.) 1991, pp. 137–44. New York: ACM Press
78. Imel, Z. E., Caperton, D. D., Tanana, M., & Atkins, D. C. (2017, March 20). Technology-Enhanced Human Interaction in Psychotherapy. Journal of Counseling Psychology. Advance online publication. http://dx.doi.org/10.1037/cou0000213
79. McCullough, D. (2015). The Wright brothers. New York, NY: Simon & Schuster.
80. Kinney, J. R. (2006). Airplanes: The life story of a technology. Baltimore, MD: Johns Hopkins University Press.
81. Tracey, T. J. G., Wampold, B. E., Lichtenberg, J. W., & Goodyear, R. K. (2014). Expertise in psychotherapy: An elusive goal? American Psychologist, 69, 218–229. http://dx.doi.org/10.1037/a0035099
82. Wampold, B. E., & Imel, Z. E. (2015). The great psychotherapy debate: The evidence for what makes psychotherapy work. New York, NY:Routledge.
83. The International Encyclopedia of Geography. Edited by Douglas Richardson, Noel Castree, Michael F. Goodchild, Audrey Kobayashi, Weidong Liu, and Richard A. Marston. DOI: 10.1002/9781118786352.wbieg0432
84. Lassaad Ben Ammar, Abdelwaheb Trabelsi , Adel Mahfoudhi, A model-driven approach for usability engineering of interactive systems, Software Qual J (2016) 24:301–335 DOI 10.1007/s11219-014-9266-y
85. Abran, A., Khelifi, A., Suryn, W., & Seffah, A. (2003). Usability meanings and interpretations in iso standards. Software Quality Journal, 11(4), 325–338.
86. Seffah, A., & Metzker, E. (2004). The obstacles and myths of usability and software engineering.Communications of the ACM, 47(12), 71–76.
87. Seffah, A., Donyaee, M., Kline, R. B., & Padda, H. K. (2006). Usability measurement and metrics: A consolidated model. Software Quality Control, 14, 159–178.
88. Abraha˜o, S., Iborra, E., & Vanderdonckt, J. (2008). Usability evaluation of user interfaces generated with a model-driven architecture tool. In E. C. Law, E. Hvannberg, & G. Cockton (Eds.), Maturing usability: Quality in software, interaction and value., human-computer interaction series (pp. 3–32).London: Springer.
89. Aquino, N., Vanderdonckt, J., Condori-Ferna´ndez, N., Dieste, O., & Pastor, O. (2010). Usability evaluation of multi-device/platform user interfaces generated by model-driven engineering. In Proceedings of the 2010 ACM-IEEE international symposium on empirical software engineering and measurement, ESEM ’10 (pp. 30:1–30:10). New York, NY: ACM. doi:10.1145/1852786.1852826.
90. Fernandez, A., Abraha˜o, S., & Insfran, E. (2013). Empirical validation of a usability inspection method for model-driven web development. Journal of Systems and Software, 86(1), 161–186.
91. Panach, J. I., Aquino, N., & Pastor, O. (2014). A proposal for modelling usability in a holistic mdd method. Science of Computer Programming, 86, 74–88.
87. Abraha˜o, S., & Insfran, E. (2006). Early usability evaluation in model driven architecture environments. In Proceedings of the sixth International conference on quality software (pp. 287–294). Washington,DC: IEEE Computer Society. doi:10.1109/QSIC.2006.26. http://dl.acm.org/citation.cfm?id=1190618.1191343.
88. Molina, F., & Toval, A. (2009). Integrating usability requirements that can be evaluated in design time into model driven engineering of web information systems. Advances in Engineering Software, 40(12), 1306–1317.
89. Panach, J. I., Condori-Fernandez, N., Vos, T. E. J., Aquino, N., & Valverde, F. (2011). Early usability measurement in model-driven development: Definition and empirical evaluation. International Journal of Software Engineering and Knowledge Engineering, 21(3), 339–365.
90. Panach, J. I., Juzgado, N. J., & Pastor, O. (2012). Introducing usability in a conceptual modeling-based software development process. In P. Atzeni, D. Cheung, & S. Ram (Eds.), Conceptual Modeling, Lecture Notes in Computer Science (Vol. 7532, pp. 525–530). Heidelberg, Springer.
91. Fernandez, A., Insfran, E., & Abraha˜o, S. (2009). Integrating a usability model into model-driven web development processes. In Proceedings of the 10th international conference on web information systems engineering, WISE ’09 (pp. 497–510). Berlin, Heidelberg: Springer.
92. Bass, L., & John, B. E. (2000). Achieving usability through software architectural styles. In CHI ’00 extended abstracts on human factors in computing systems, CHI EA ’00 (pp. 171–172). New York, NY:ACM.
93. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., & Vanderdonckt, J. (2003). A unifying reference framework for multi-target user interfaces. Interacting with Computers, 15(3),289–308. Computer-Aided Design of User Interface.
94. Gonzalez-Huerta, J., et al. (2010). Towards an architecture for ensuring product quality in model-driven software development. In Proceedings of the 11th international conference on product focused software, PROFES ’10 (pp. 28–31). New York, NY: ACM.
95. Sottet, J. S., et al. (2008). A model-driven engineering approach for the usability of plastic user interfaces. In: J. Gulliksen, M. Harning, P. Palanque, G. Veer, & J. Wesson (Eds.), Engineering interactive systems. Lecture notes in computer science (Vol. 4940, pp. 140–157). Berlin, Heidelberg: Springer.
96. Nielsen J. 1993. Usability Engineering. Boston: Academic
97. Whiteside J, Bennett J, Holtzblatt K. 1988. Usability engineering: our experience and evolution. See Helander 1988, pp. 791–817
98. Carroll JM. 1985. What’s in a Name? An Essay in the Psychology of Reference. New York:Freeman
99. Whiteside J, Wixon D. 1987. Improving human-computer interaction: a quest for cognitive science. In Interfacing Thought: Cognitive Aspects of Human-Computer Interaction,ed. JM Carroll, pp. 337–52.Cambridge, MA: Bradford/MIT Press.
100. Wixon D, Holtzblatt K, Knox S. 1990. Contextual design: an emergent view of system design. In Proc. CHI ‘90: Hum. Factors Comput. Sys., Seattle, pp. 329–36. New York: Assoc. Comput. Mach.
Published online 29.06.2022